Skip to main content

Nanomaterials

  • Carbon Nanotubes
  • Life Sciences

Quantification of Nitric Oxide Concentration Using Single-Walled Carbon Nanotube Sensors

Authors Jakob Meier, Joseph Stapleton, Eric Hofferber, Abigail Haworth, Stephen Kachman and Nicole M. Iverson

Abstract

Nitric oxide (NO), a free radical present in biological systems, can have many detrimental effects on the body, from inflammation to cancer. Due to NO's short half-life, detection and quantification are difficult. The inability to quantify NO has hindered researchers' understanding of its impact in healthy and diseased conditions. Single-walled carbon nanotubes (SWNTs), when wrapped in a specific single-stranded DNA chain, become selective to NO, creating a fluorescence sensor. Unfortunately, the correlation between NO concentration and the SWNT's fluorescence intensity has been difficult to determine due to an inability to immobilize the sensor without altering its properties. Through the use of a recently developed sensor platform, systematic studies can now be conducted to determine the correlation between SWNT fluorescence and NO concentration. This paper explains the methods used to determine the equations that can be used to convert SWNT fluorescence into NO concentration. Through the use of the equations developed in this paper, an easy method for NO quantification is provided. The methods outlined in this paper will also enable researchers to develop equations to determine the concentration of other reactive species through the use of SWNT sensors.

Related Products