Aller au contenu principal

Nature

  • Pérovskite

Photo-ferroelectric perovskite interfaces for boosting VOC in efficient perovskite solar cells

Auteurs Giovanni Pica, Lorenzo Pancini, Christopher E. Petoukhoff, Badri Vishal, Francesco Toniolo, Changzeng Ding, Young-Kwang Jung, Mirko Prato, Nada Mrkyvkova, Peter Siffalovic, Stefaan De Wolf, Chang-Qi Ma, Frédéric Laquai, Aron Walsh & Giulia Grancini

Résumé

Interface engineering is the core of device optimization, and this is particularly true for perovskite photovoltaics (PVs). The steady improvement in their performance has been largely driven by careful manipulation of interface chemistry to reduce unwanted recombination. Despite that, PVs devices still suffer from unavoidable open circuit voltage (VOC) losses. Here, we propose a different approach by creating a photo-ferroelectric perovskite interface. By engineering an ultrathin ferroelectric two-dimensional perovskite (2D) which sandwiches a perovskite bulk, we exploit the electric field generated by external polarization in the 2D layer to enhance charge separation and minimize interfacial recombination. As a result, we observe a net gain in the device VOC reaching 1.21 V, the highest value reported to date for highly efficient perovskite PVs, leading to a champion efficiency of 24%. Modeling depicts a coherent matching of the crystal and electronic structure at the interface, robust to defect states and molecular reorientation. The interface physics is finely tuned by the photoferroelectric field, representing a new tool for advanced perovskite device design.


Produits associés